ˆ Dichtefunktion: ƒ X ( ) = F ( ) bei differenzierbarer Verteilungsfunktion (stetige Zufallsvariable) (, ) E [X] = E X 1

Größe: px
Ab Seite anzeigen:

Download "ˆ Dichtefunktion: ƒ X ( ) = F ( ) bei differenzierbarer Verteilungsfunktion (stetige Zufallsvariable) (, ) E [X] = E X 1"

Transkript

1 Formlsmmlug Eigschft vo Zufllsvril X si i (disrt odr sttig Zufllsvril. ˆ Vrtilugsfutio: F X ( = P(X ˆ Dichtfutio: ƒ X ( = F ( i diffrzirrr Vrtilugsfutio (sttig Zufllsvril ˆ Zähldicht, Frquz- odr Mssfutio: ƒ X ( = P(X = i disrt Zufllsvril ˆ Lyr-Idtität: mi(mx(x ; ; = mi(x; + mi(x; = mx(x ; mx(x ( + ; Momt vo Zufllszhl ˆ -ts Momt (für N : E X = i sttig Zufllsvril: E X = i disrt Zufllsvril: E X = ˆ Erwrtugswrt (rsts Momt vo X: df( (, ƒ (d ƒ X ( E [X] = E X ˆ Für d Fll, dss m s mit ir Mischform sttigr ud disrtr Vrtilug zu tu ht, igt sich di folgd Forml: w X ichtgtiv ist. E [X] = ( F(d, ˆ -ts ztrls Momt: E [(X E [X] ] für N ˆ Vriz (. ztrls Momt vo X: Vr [X] = E (X E [X] = E X (E [X] ˆ Stdrdwichug: [X] = Vr[X] ˆ Vritiosoffizit für E[ X] > : Vo[X] = [X] E[X] = Vr[X] E[X] ˆ Asolut Schif (3. ztrls Momt vo X: E (X E[X] 3 ˆ (Rltiv Schif für [X] > : γ[x] = E (X E[X] 3 (Vr[X] 3 ˆ i s gstutzts -ts Momt (mit N ud s R: E[X X > s] = E[X (s, (X] = P(X > s = E (X E[X] 3 ([X] 3 (s, df( F(s

2 Trsformirt vo Zufllsvril ˆ Chrtristisch Futio: ψ X (t = E tx mit t R ud imgiärr Eihit ˆ Momtrzugd Futio: MEF X (t = E tx, t R i sttig Zufllsvril: MEF X (t = t ƒ (d ˆ (Whrschilichits-Erzugd Futio: m X (t = EF X (t = E t X, t [, ] i disrt Zufllsvril: m X (t = t ƒ X ( Uglichug ˆ Mrov (für ll c > : P ( X c E[ X ] c E[h ( X ] P ( X c h(c für strg mooto wchsd Futio h uf R + ˆ Tschychv (für ll c > : P ( X E[X] c Vr[X] c ˆ Ctlli (für ll c > : P (X E[X] + c Vr[X] c + Vr[X] Wchslzihug zwisch Zufllsvril Sid A ud B Erigiss mit P(B =, d gilt für di digt Whrschilichit P(A B: P(A B P(A B = P(B Di Vrtilug dr Zufllsvril Y, gg X =, wird ls digt Vrtilug vo Y, gg X =, urz P Y X=, zicht. P Y X= ht di vo hägig Vrtilugsfutio P(Y y, X = F Y X= (y = P(Y = y X = = P(X = Fsst m ds digd Erigis ls Zufllsvril X uf, so sid di Momt dr digt Vrtilug vo Y, gg X, trsformirt Zufllsvril vo X ud für dis ö flls Momt rcht wrd. ˆ Itrtivität dr Erwrtugswrt E[E[Y X]] = E[Y] für ll X ud Y E[Vr[Y X]] + Vr[E[Y X]] = Vr[Y] für ll X ud Y ˆ Kovriz: Cov(X, Y = E[(X E[X] (Y E[Y]] = E[X Y] E[X] E[Y] ˆ Korrltiosoffizit: Cov(X, Y X E[X] ρ XY = = Cov, Y E[Y] [, ] Vr[X] Vr[Y] Vr[X] Vr[Y]

3 Summ vo Zufllsvril ˆ Fltug: Sid X ud Y stochstisch uhägig, so ist di Vrtilug dr Summ X + Y durch di Fltug P X P Y dr Vrtilug P X ud P Y gg: Sttig Fltugsforml (P X P Y (A = A ƒ X ( ƒ Y (z d R mit A R, w X, Y sttig Zufllsvril mit Dicht ƒ X zw. ƒ Y sid. Disrt Fltugsforml (P X P Y ({} = P(X + Y = = dz P(X = P(Y = = mit N, w X, Y disrt Zufllsvril uf N sid. ˆ Zufllssumm: N si i disrt Zufllsvril uf {,,,...} ud S i Zufllssumm mit rwis stochstisch uhägig, idtisch wi X vrtilt X, di stochstisch uhägig vo N sid.. Glichug vo Wld: E[S] = E[N] E[X]. Glichug vo Wld: Vr[S] = E[N] Vr[X] + Vr[N] (E[X] ˆ Fudmtlforml: ψ S (t = m N (ψ X (t MEF S (t = m N (MEF X (t X disrt vrtilt uf {, Δ, Δ,...}, Δ > für ll t R für ll t R m S (t = m N (m X (t für ll t [, ] ˆ Zusmmgstzt Poisso-Vrtilug (Szilfll ir Vrtilug ir Zufllssumm Dfiitio: ZPV(, P X = P S mit mit X P X, N P( Erwrtugswrt: E[S] = E[X] Vriz: Vr[S] = E[X ] Asolut Schif: S = N X = E (S E[S] 3 = E[X 3 ] Rltiv Schif: γ[s] = E[X 3 ] (E[X ] 3 ˆ Norml-Powr-Aroximtio: Es si U i Zufllsvril mit xistird Momt μ = E[U], = Vr[U] >, γ = γ[u] >. D gilt di Nährug: P(U γ γ + 6 γ μ + 9 3

4 B. Vrtilug Disrt Vrtilug Bzichug/ Kurz~/Prmtr Zähldicht = P N = ( Rursio für Zähldicht Erwrtugswrt Vriz Schif (Whrschilichits- Erzugd Futio Poissovrtilug ( ( > Biomilvrtilug B( m, θ ( m, θ (, =! ( m = θ ( θ ( =,..., m m = ( = m + θ = θ ( =,..., m ( θ = m m θ m θ ( θ θ m θ ( θ θ t + ( t ( θ m Ngtiv Biomil- Vrtilug NB( β, θ ( β >, θ (, β + = θ ( ( θ β β + = θ ( ( θ = β θ β θ β θ ( θ + θ β θ θ θ t β 5

5 Sttig Vrtilug (I Bzichug/ Kurz~/Prmtr sttig Glichvrtilug (, ( <,, Dicht x (, ( ( x Vrtilugsfutio x x < x x > Erwrtugswrt Vriz + ( Schif Momtrzugd Futio t = t t t ( t Gstutzt Momt EX X > s + + s ( + ( s ( s (, Gmmvrtilug Γ (, (, (, Exotilvrtilug Ex ( ( > Normlvrtilug ( μ, ( μ, > Γ ( x ( x > x ( x x ( x μ π ( x x t t dt Γ( =Γ : (, x ( x ( x x x μ Φ ( x μ t ( t < t ( t < t ( ( s (, Γ( ( Γ (, Γ + Γ +! = s ( s! + (-Schritt-Rursio 6

6 Sttig Vrtilug (II Bzichug/ Kurz~/Prmtr Logormlvrtilug LN ( μ, ( μ, > Dicht ( l( x μ π x ( x > Vrtilugsfutio ( l x μ Φ ( x > Erwrtugswrt Vriz μ+ μ+ ( Schif ( Momtrzugd Futio + Gstutzt Momt EX X > s ( s l μ μ Φ + l ( s μ Φ (Euro Prto- Vrtilug Pr (, (, (, um vrscho (Amric Prto- Vrtilug Pr (, (, (, + x ( x > + x ( x > + x ( x > + x ( x > ( > ( > ( ( ( > ( ( 3 + ( > 3 xistirt icht = s ( s >, > ( s + 7

Formel- und Tabellensammlung zum Aktuariellen Grundwissen

Formel- und Tabellensammlung zum Aktuariellen Grundwissen Formel- ud Tellesmmlug zum Aturielle Grudwisse Schdeversicherugsmthemti A. Zufllsvrile X, Y seie (disrete oder stetige Zufllsvrile. Verteilugsfutio: F( = P( X (Verteilugs-Dichte: f ( F ( = ei differezierrer

Mehr

e = lim ( n n) und Folgerungen

e = lim ( n n) und Folgerungen = lim + ud Folgrug Ergäzug zur Vorlsug Aalysis I, Dail Grisr, Dz. 2005 Satz: Si x = +, y = + +. Da gilt lim x = lim y = x ist strg mooto wachsd, y ist strg mooto falld. Isbsodr gilt für all x < < y. Bmrug:

Mehr

Klausur (Mathematik II) - Sommersemester 2013

Klausur (Mathematik II) - Sommersemester 2013 Klusur Mthmtik II) - Sommrsmstr Nm: Mtrikl-Nr: EMil: optiol Schll-Korrktur) Aug 6 7 8 Pukt 6 Als Hilsmittl sid di vo dm Lhrutrgt zur Vrügug gstllt sowi ig Utrlg zuglss Skript ud Mustrug sowi dr Lösug).

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a Mihl Buhlm Mthmtik > Vktohug > Kis Pmtfom Eilitug Im didimsiol ll Vktoum kö Gd ud E uh Kis mit Hilf vo Pmtfom dgstllt wd. Gg si im Folgd i Kis k mit Kismittlpukt Mm m m 3 ud Kisdius, >. Sid ud zwi Eihitsvkto,

Mehr

StudiumPlus- SS 2017 Torsten Schreiber

StudiumPlus- SS 2017 Torsten Schreiber StudiumPlus- SS 07 Torst Schribr 44 Dis rg sollt Si uch oh Skript btwort kö: N Si di wichtigst Eigschft vo Mg! Wi kö Si i Itrvll dfiir? Wi fuktioirt di Modulo-Oprtio? Wofür brucht m ds d Morg Gstz? Ws

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

R. Brinkmann Seite Achsenschnittpunkte von e- Funktionen und Exponentialgleichungen

R. Brinkmann  Seite Achsenschnittpunkte von e- Funktionen und Exponentialgleichungen R. Brikma http://brikma-du.d Sit 08..009 Achsschittpukt vo - Fuktio ud Epotialglichug Eiführugsbispil Bispil : Zu bstimm sid di Achsschittpukt vo s + f = D Schittpukt mit dr y y=f 0 Achs fidt ma übr d

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulssungsprüfung Stochstik, 2.0.2 Wir gehen stets von einem Mßrum (Ω, A, µ) bzw. einem Whrscheinlichkeitsrum (Ω,A,P) us. Die Borel σ-algebr uf R n wird mit B n bezeichnet, ds Lebesgue Mß uf R n wird mit

Mehr

Kerne 2, 2.Teil. Inhalt

Kerne 2, 2.Teil. Inhalt Il Volsg 6: K K,.Tl Slodll Nklo-Nklo Wslwkg Ksp gss Mo Kzfäll: α, β, γ Zfll F s Gold Rgl Mlpolslg WS 78 Sbük, os: Pysk V WS 78 Sbük, os: Pysk V 3 Volsg 6: K F s Gold Rgl Übggs zws Afgs- d dzsäd N-lvss

Mehr

Formelsammlung. PD Dr. C. Heumann

Formelsammlung. PD Dr. C. Heumann Formelsammlug zur Vorlesug Statistik II PD Dr C Heuma Formelsammlug Statistik II Iduktive Statistik Regel der Kombiatorik ohe Wiederholug mit Wiederholug! Permutatioe! 1! s! ( ) ( ) + m 1 ohe Reihefolge

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig

Mathematik für VIW - Prof. Dr. M. Ludwig Mhmik für VIW - Prof. Dr. M. Ludwig 7.3.4.3 Lplc-Trformio (Lplc 749-87 Di Lplc-Trformio i i Spzilfll vo Igrlrformio. Hir wird i pzill zur Löug ihomogr Diffrilglichug igführ. Awdug fid i u.. i dr Siglvrriug

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable

1. Wahrscheinlichkeitsrechnung. 2. Diskrete Zufallsvariable. 3. Stetige Zufallsvariable. 4. Grenzwertsätze. 5. Mehrdimensionale Zufallsvariable 1. Wahrscheilichkeitsrechug. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grezwertsätze 5. Mehrdimesioale Zufallsvariable Stetige Zufallsvariable Eie Zufallsvariable X : Ω R heißt stetig, we

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential.

Lösung der Schrödinger- Gleichung für ein Harmonisches Potential. Lösug dr Srödigr- Gliug für i aroiss Poial. Ggb is di Srödigr Gliug i saioärr For: o s soll i aroisr Oszillaor vorlig: o i Variablrasforaio wird durgfür: ( ε ) Lösug dur d Asaz a Allgi, oog, liar Diffrialgliug.

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Übungsaufgaben "Vektorrechnung"

Übungsaufgaben Vektorrechnung stllt vo Olf Gmkow Sit / Übugsufgb "Vktochug" ) Vo i Gd g ist d ukt (; ; ) ud d Richtugsvkto bkt. Bch Si d Abstd ds ukts (; ; ) vo dis Gd. Lösug, dt d g ) Di i d,-b vlufd Gd g schidt di bid Kooditchs jwils

Mehr

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i.

m d2 x dt 2 = K( x), d 2 x j dt 2 = K i. P m d2 x dt 2 = K( x), m δ ij d 2 x j dt 2 = K i. C W C = C K i dx i δ ij δ ij λδ ij, m m λ d v dt K BA = K AB R 4 E 3 R Σ Σ x = R x a, R T R = I, R... E 3 T 1, 3 + 3 + 1 = 7 E 3 = O 3 T 3,... E 3 O 3

Mehr

Mathematik Formeln 1. und 2. Semester von Gerald Meier

Mathematik Formeln 1. und 2. Semester von Gerald Meier Mthemti Fomel. ud. Semeste vo Geld Meie Gudlge. Ailduge.. Sujetive Ailduge f( X) y Y X: y f.. Ijetive Ailduge Y, X ud f f Jedes Bild y f( X) ht geu ei Uild X..3 Bijetive Ailduge Die Aildug ist sujetiv

Mehr

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 6. Übungsblatt (Präsenzübungen) - Lösungen Prof. Dr. Raier Dahlhaus Statisti Witersemester 06/07 Vorbereitug auf 6. Übugsblatt Präsezübuge - Lösuge Aufgabe P0 Bereche vo UMVU-Schätzer. Gegebe sei jeweils ei statistisches Modell R, B R, P θ, θ Θ

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Teil I)

Grundlegende Eigenschaften der Atomkerne: β-zerfall (Teil I) Krhysik I Grudlgd Eigschaft dr Atomkr: β-zrfall (Til I) Motivatio Für di Bschribug dr Elmtsyths i astrohysikalisch Umgbug sid isbsodr gut Ktiss übr di β-zrfalls- Eigschaft vo istabil Kr frab vom Tal dr

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Einführung in die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aachen Definitionen und Sätze

Einführung in die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aachen Definitionen und Sätze Eiführug i die Stochastik für Mathematiker - SS 03 Prof. Dr. M. Schaefer, RWTH Aache Defiitioe ud Sätze Erstellt vo Lars Otte lars.otte@kulle.rwth-aache.de 5. September 2003 Diese Aufzeichuge stamme icht

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Chapter 1 : þÿ m e l d e n S i e s i c h b e t a t h o m e c h a p t e r

Chapter 1 : þÿ m e l d e n S i e s i c h b e t a t h o m e c h a p t e r Chapter 1 : þÿ m e l d e n S i e s i c h b e t a t h o m e c h a p t e r þÿ d a s s W e i t e r e n e u r o p ä i s c h e n l ä n d e r n m i t s i c h e r h e i t f a l s c h t a t s ä c h l i c h s i

Mehr

Force of compression Einschubkraft. Force of extension Ausschubkraft. 5 Damping range Dämpfbereich. Pneumatic Pneumatisch.

Force of compression Einschubkraft. Force of extension Ausschubkraft. 5 Damping range Dämpfbereich. Pneumatic Pneumatisch. D Damping in extension usschub gedämpft D No damping in compression Einschub ungedämpft usgeschoben Friction-force Reibung Force of compression Einschubkraft Compressed Eingeschoben F 3 F R Force [ N ]

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 2 Wintersemester 2011/2012 Prof. Dr. O. Junge, A. Bittrcher Zentrum Mthemtik - M3 Technische Universität München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT Wintersemester / Tutorübungsufgben (3..-4..) Aufgbe T Seien R und α positiv. Die

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015

Musterlösung für die Klausur zur Vorlesung Stochastik I im WiSe 2014/2015 Musterlösug für die Klausur zur Vorlesug Stochastik I im WiSe 204/205 Teil I wahr falsch Aussage Gilt E[XY ] = E[X]E[Y ] für zwei Zufallsvariable X ud Y mit edlicher Variaz, so sid X ud Y uabhägig. Für

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

Chapter 1 : þÿ b e t a t h o m e B e d i n g u n g e n B o n u s c h a p t e r

Chapter 1 : þÿ b e t a t h o m e B e d i n g u n g e n B o n u s c h a p t e r Chapter 1 : þÿ b e t a t h o m e B e d i n g u n g e n B o n u s c h a p t e r þÿ K u n d e n s u p p o r t r e i c h t a u s, u m d e n L ö s c h v o r g a n g e i n z u l e i t e n. G r u n d s ä t z

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Etablierung eines Qualitätsmanagementsystems (QMS) für Lehre und Studium an der TU Berlin

Etablierung eines Qualitätsmanagementsystems (QMS) für Lehre und Studium an der TU Berlin Etablirug is Qualitätsmaagmtsystms (QMS) für Lhr ud Studium a dr TU Brli Prof. Dr.-Ig. Jörg Stibach (Projktlitr) Prof. Dr.-Ig. Joachim Hrrma (fachlichr Bratr) Dipl.-Ig. Bjami Will (Projktmaagr) Dipl.-Psych.

Mehr

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz

Übung 11. Stochastische Signale Prof. Dr.-Ing. Georg Schmitz Übug Aufgabe : Ukorrelierte, statistisch uabhägige Prozesse Es sid zwei stochastische Prozesse gegebe mit X = cos(z ), Y = cos(z φ). Hierbei sei Z auf [ π, π] gleichverteiltes weißes Rausche mit E{Z }

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

Mit Bus und Bahn Dortmund erleben

Mit Bus und Bahn Dortmund erleben D Tä z Ev D 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 00 0 0 0 z D! Dv I D I ä z z z v z V D I V R z! J J Ez T I, T, O,, R L D G R D I T V? I! D R I &! T TT ( P) TT z P T () G v I ä P J D T! :, T! z G v D T P,

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Chapter 1 : þÿ b e t a t h o m e C h a m p i o n s L e a g u e W e t t c h a p t e r

Chapter 1 : þÿ b e t a t h o m e C h a m p i o n s L e a g u e W e t t c h a p t e r Chapter 1 : þÿ b e t a t h o m e C h a m p i o n s L e a g u e W e t t c h a p t e r þÿ C h a m p i o n s L e a g u e, B u n d e s l i g a W e t t e n P r o g n o s e n u n t e r s t ü t z t v o n B e

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2010 Karlsruher Institut für Technologie Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheinlichkeitstheorie und Statistik vom 14.9.2010 Musterlösungen Aufgabe 1: Gegeben sei eine Urliste

Mehr

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.

FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln. FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +

Mehr

T 1 Th T 1. 1 T 1 h Th

T 1 Th T 1. 1 T 1 h Th T H c c > 0 Tx c x x H H K T : H K T T K T h H T 1 > 0 h = T 1 Th T 1 Th 1 T 1 h Th h H T : T h H,h 0 Th = 0 T c > 0 c h Th = 0. c h > 0 T : (Th n ) n T (h n ) n H T h n h m 1 c Th n Th m c > 0 (h n )

Mehr

A Kurzskript: Stochastische Majorisierung und Testtheorie

A Kurzskript: Stochastische Majorisierung und Testtheorie A Kurzskript: Stochastische Majorisierung und Testtheorie A.1 Stochastische Majorisierung Denition A.1 (stochastisch gröÿer) Seien Q und P zwei W'Maÿe auf (R, B). Dann heiÿt Q stochastisch gröÿer als P

Mehr

Kapitel 8: Unendlich teilbare Verteilungen

Kapitel 8: Unendlich teilbare Verteilungen - 8 (Kapitel 8: Uelich teilbare Verteilge Kapitel 8: Uelich teilbare Verteilge I iesem Kapitel were wir elich teilbare Verteilge af ( I R, B stiere, ie afs Egste mit e reellwertige Prozesse (X t t mit

Mehr

Logarithmusfunktionen

Logarithmusfunktionen V Logarithmusfuktio Widrholug wichtigr Rchgstz Üug ach http://www.hrdr-orschul.d/madica/aufg000/pu.pdf (utr Hälft ds Aritslatts!) mit folgd Zusatzfrag: Brch Si ud drück Si durch i izig Logarithmus glichr

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

5.5.Abituraufgaben zu Logarithmusfunktionen

5.5.Abituraufgaben zu Logarithmusfunktionen 5.5.Aiturufgn zu Logrithmusfunktionn Aufg : urvnuntrsuchung mit Prmtr, Intgrtion ohn GTR () Für jds rll t und > 0 sind di Funktionn f t und g ggn durch f t () (ln + t) und g() Ds Schuild von f t hißt t

Mehr

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n

Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion. Für n 1 definiere S n := n Klassische Extremwerttheorie Seien (X k ), k IN, nicht degenerierte i.i.d. ZV mit Verteilungsfunktion F. Für n 1 definiere S n := n i=1 X i, M n := max{x i :1 i n} Frage: Welche sind die möglichen (nicht

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

k + n + 1. t k+n dt =

k + n + 1. t k+n dt = 7 Orthogoalpolyome Beispiel Sei f : [,] R stetig. Aufgabe: Bestimme die Bestapproximatio P P N mit P f Q f für alle Q P N bezüglich der Norm u = u,u mit dem Salarprodut u,v = u(t)v(t). Lösug : Wähle Moombasis,t,t,...,t

Mehr

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden.

Wir betrachten hier nur den Fall m,n N, also m>0 und n>0. Die anderen Fälle, bei denen m=0 oder n=0 ist, können leicht selbst gelöst werden. Übugsaufgab Fourirrih Mahmaik III M Prof. Dr. B. Grabowski Bla 6 grabowski@hw-saarlad.d Lösug zu Übugs-Bla 6 Zu Aufgab Wir brach hir ur d Fall m, N, also m> ud >. Di adr Fäll, bi d m odr is, kö lich slbs

Mehr

SKILL software. Das Leitsystem: embiaguide Konzept, Kunden, erster Großauftrag in Aussicht! erster Großauftrag. Konzept. Kunden

SKILL software. Das Leitsystem: embiaguide Konzept, Kunden, erster Großauftrag in Aussicht! erster Großauftrag. Konzept. Kunden Ds Lisysm: mbiguide Kozp, Kud, rsr Großufrg i Aussich! SKILL sofwr Kozp rsr Großufrg Kud Ds Lisysm: SKILLguid rsmlig i THE SQUAIRE/Trmil 1, Flughf Frkfur SKILLsofwr ms SKILL sofwr SKILLbudoc Projk dokumir

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable.

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable. Empirische Ökoomie 1 Sommersemester 2013 Formelsammlug Hiweis: Alle Variable, Parameter ud Symbole sid wie i de Vorlesugsuterlage defiiert. Statistische Grudlage Erwartugswert Erwartugswert ud Variaz eier

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

r = 2 y p = 1 und z p = 1 P(3; 1; 1) bzw. PS linear abhängig ist. 7 PS ist Höhe der Pyramide 14

r = 2 y p = 1 und z p = 1 P(3; 1; 1) bzw. PS linear abhängig ist. 7 PS ist Höhe der Pyramide 14 Lösug Abitur Listugskurs Mthmtik www.mth-schul.d Sit vo 5 P Gomtri A(5;-;), B(;5;-) C(-;7;), D(-;;), S(;;5). Zichug: (Usichtbr Kt: AD, DS, CD ) A, B, C, D sid Eckpukt is Prlllogrmms, w j wi dr Vktor AB,

Mehr

Antwort. Deutscher Bundestag Drucksache 19/4280. der Bundesregierung

Antwort. Deutscher Bundestag Drucksache 19/4280. der Bundesregierung D D 98 9 98 K M y DI LINK D 9383 D N V D I (I : V y ( I V y N D D y I L x y ( I V D N y K M D y N L D D D Q j y N L I N R L y j D 8 D D y x D 98 D 9 D y K I N y K N ( j O? K y ( j O? D D P N K 93 P D y

Mehr

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003

Kantonsschule Reussbühl Maturitätsprüfung 2002 Es/Gä/Ko/Sw Mathematik Grundlagen Lösungen Sw / 2003 Lösung der Aufge : x x ( x ) ( x ) ) f(x) {} ( x ) ( x ) ( x ) ( x ) ( x x ) f (x) ( x ) x x ( x ) f (x) x x x ( x ) (vorgegeen) Nullsellen : x - x. urch Proieren finde mn die Nullselle x. Polynomdivision

Mehr

Musterlösungen zur 5. Übung

Musterlösungen zur 5. Übung . Aufg, ritt von Edurd Tsingr Mustrlösungn zur 5. Üung Wlchs dr folgndn Sstm ist zitinvrint odr nicht? Erinnrung ws in zitinvrints Sstm ist:. ] -. -n -n -n- 3. % n] n n 4. n % --> ds Sstm ist zitinvrint

Mehr

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R

f X1 X 2 Momente: Eigenschaften: Var(aX + b) = a 2 Var(X) a, b R Siebformel vo Poicare-Sylvester: k P A k = k+ P A ij k= k= = k= P A k k= i

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

Asymptotische Stochastik (SS 2010)

Asymptotische Stochastik (SS 2010) Institut für Stochastik PD. Dr. Dieter Kadelka Daniel Gentner Asymptotische Stochastik (SS 2010) Lösungen zu Übungsblatt 4 Aufgabe 1 (lokaler Grenzwertsatz von de Moivre und Laplace und eine Verallgemeinerung)

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch

Parameterintegrale. Integrale können auch von Parametern abhängen, denken wir nur an die Gamma-Funktion, die definiert ist für x > 0 durch Prmeterintegrle Integrle können uc von Prmetern bängen, denken wir nur n die Gmm-Funktion, die definiert ist für x > durc Γ(x) = t x e t dt Hier ist x der Prmeter, von dem der Integrnd und dmit uc ds Integrl

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt

Einführung in die Wahrscheinlichkeitstheorie Lösungen zum Wiederholungsblatt TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 23/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Eiführug i die Wahrscheilichkeitstheorie Lösuge zum Wiederholugsblatt Aufgabe

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Erwartungswerte, Varianzen

Erwartungswerte, Varianzen Kapitel 3 Erwartungswerte, Varianzen Wir wollen nun Zufallsvariablen eine Maßzahl zuordnen, die ihr typisches Verhalten in vager Weise angibt. Haben wir n Punkte x 1,...,x n R d, so ist der Schwerpunkt

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Vorlesung 9b. Kovarianz und Korrelation

Vorlesung 9b. Kovarianz und Korrelation Vorlesung 9b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Reihenentwicklung die Taylorentwicklung

Reihenentwicklung die Taylorentwicklung Rihtwicklug di Taylortwicklug Motivatio: Es lig i Potrih olgdr Form vor: Durch Umorm rgibt sich: s s s s s K K K Für udlich groß rgibt sich im Wrtbrich < < i dlich Summ s. Dis lässt sich als Fuktio vo

Mehr

7 Trigonometrische Polynome und FOURIER-Reihen

7 Trigonometrische Polynome und FOURIER-Reihen Prosemir Alysis 7 Trigoometrische Polyome ud FOURIER-Reihe 7 Trigoometrische Polyome ud FOURIER-Reihe I diesem Abschitt werde trigoometrische Polyome ud FOURIER-Reihe eigeführt ud eiige ihrer Eigeschfte

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr